FEATURES

- High performance, low power 8bit RISC core

131 Instructions, 80\% execute in one cycle
32×8 general purpose registers
Up to 32 MIPS when running at 32 MHz
Integrated one-cycle 8x8 Multiplier

- Data and Programming Memory

8Kbytes In-system-programmable FLASH memory
1Kbytes Internal SRAM
504Bytes Data FLASH, Support Byte-wise access (E2PROM like)
Creative flash encryption based on state changing.

- Peripherals

Two 8bit Timer/Counter, support compare-match output
One 16bit Timer/Counter with separated clock prescalar, Support Input Capture and compare-match output
Internal 32 KHz RC oscillator, support calibrated to $\pm 1 \%$
Up to 6-channel PWM
8-channel 10bit Analog/Digital Converter

- 3-channel Difference input, x7.5, x15, x30 gain control
- Integrated thermal sensor

2-channel Analog Comparator, channel can be extended from ADC
Programmable Watch dog timer
Programmable serial USART
Master/slave SPI serial Interface
Byte-oriented 2-wire serial interface (Philips I2C compatible)

- Special Microcontroller features

Serial Wire on-chip Debug (SWD)
External and internal interrupt sources
Power on reset and 3-level Brown-out Reset (Low voltage reset)
Internal 32 MHz RC oscillator, $\pm 1 \%$ after calibration
Internal 32 KHz RC oscillator, $\pm 1 \%$ after calibration
External crystal support 32.768 KHz or $400 \mathrm{~K} \sim 32 \mathrm{MHz}$
Up to 12-channel capacitive touch keys
8 -channel NMOS I/O, sink up to 80 mA current.

- I/O and Package

QFP32L (provide up to 30 GPIO)
S/SOP28L (provide up to 26 GPIO)

- Operating Environment

Power supply: $\quad 1.8 \mathrm{~V} \sim 5.5 \mathrm{~V}$
Frequency: $\quad 0 \sim 32 \mathrm{MHz}$
Temperature: $\quad-40 \mathrm{C} \sim+85 \mathrm{C}$
HBM ESD: 4000V

8-bit LGT8XM
RISC Microcontroller with
8192 Bytes In-System
Programmable
FLASH Memory

LGT8F88A

Data book
Version 1.1.1

Application

Kitchen
Microwave oven
Induction cooker
Electric cooker
Smart home appliance
Milk machine
Coffee maker
Water heater
Smart control devices
Li-on charger
Motor control
Smart toys
Hand-held device

System Architecture

LGT8F88A Diagram

Module Name	Function Description
SWD	On-chip debugger
LGT8XM	8bit High performance RISC core
CMU	Clock management Unit
PMU	Power Management Unit
RMU	Reset Management Unit
POR/LVD	Power on Reset and Low voltage detector
ADC	8-channel 10bit ADC
Thermal Sensor	Thermal Sensor
AC	Analog Comparator
AIO	ADC and Touch Key inputs
NIO	80mA high sink NMOS I/O
PIO	Programmable Digita I/O
WDT	Watch Dog Timer

Pin-out Assignment

Pin-out Definition

PIN Name	Function Description
VCC	Power supply (1.8V ~ 5.5V)
GND	System Ground
OSC1	External Crystal or clock input
OSC2	
RSTN	External Reset input, low active
RXD	USART interface
TXD	
XCK	
INT0/1	External Interrupts or external wake-up sources
OCOA/B	Timer/Counter 0 compare-match output (PWM0A/B)
OC1A/B	Timer/Counter 1 compare-match output (PWM1A/B)
OC2A/B	Timer/Counter 2 compare-match output (PWM2A/B)
SCL	Byte-oriented Two wire interface (I2C compatible)
SDA	
SCK	Master/Slave SPI interface
SPSS	
MISO	
MOSI	
T0	External clock input of Timer0
T1	External clock input of Timer1
ICP1	Capture input of Timer1
SWD	SWD on-chip debugger or ISP interface
SWC	Pin status change interrupts
PCINTX	Analog input channels of ADC
ADC7...0	Capacitive touch key inputs
TK11...0	External VREF of ADC
VREF/TCAP104	External filter-capacitance (0.1uF) of Touch Key circuit
AINO	Input channel of Analog Comparator
AIN1	
CLKO	System clock output
PB7...0	Programmable General Purpose I/O
PD7...0	Programmable General Purpose I/O
PC6...0	
PE6...0	Pron be sink up to 80mA
PD5...0	
PE5...4	

Registers Index

Address	Name	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
Extended IO Register									
\$F6	GUID3	GUID Byte 3							
\$F5	GUID2	GUID Byte 2							
\$F4	GUID1	GUID Byte 1							
\$F3	GUIDO	GUID Byte 0							
\$F2	PMCR	PMCE	LFEN	EXTEN	WCES	OSCKEN	OSCMEN	RCKEN	RCMEN
\$F1	DSCR	DSCE	-	-	DSC4	DSC3	DSC2	DSC1	DSCO
\$FO	IOCR	IOCE	-	-	-	-	-	REFIOEN	RStIoEN
\$E2	PSSR	PSS1	-	-	-	-	-	-	PSR1
\$CF	DIDR3	-	-	-	-	TIN11D	TIN10D	TIN9D	TIN8D
\$CE	DIDR2	TIN7D	TIN6D	TIN5D	TIN4D	TIN3D	TIN2D	TIN1D	TINOD
\$CD	TKCSR	TKPD TKPSEL				TKMUX			
\$C6	UDRO	USART Data							
\$C5	UBRROH	-	-	-	-	USART Baud Rate Register High			
\$C4	UBRROL	USART Baud Rate Register Low							
\$C2	UCSROC	UMSELO		UPMO		USBSO	UCSZO1/ UDORDO	UCSZOO/ UCPHAO	UCPOLO
\$C1	UCSROB	RXCIEO	TXCIEO	UDRIEO	RXENO	TXENO	UCSZO2	RXB80	TXB80
\$C0	UCSROA	RXCO	TXCO	UDREO	FEO	DORO	UPEO	U2X0	MPCMO
\$BD	TWAMR				WI Addr	Mask			-
\$BC	TWCR	TWINT	TWEA	TWSTA	TWSTO	TWWC	TWEN	-	TWIE
\$BB	TWDR	TWI Data							
\$BA	TWAR	TWI Address							TWGCE
\$B9	TWSR	TWI Status					-	TWPS	
\$B8	TWBR	TWI Bit Rate							
\$B6	ASSR	-	EXCLK	AS2	TCN2UB	OCR2AUB	OCR2BUB	TCR2AUB	TCR2BUB
\$B4	OCR2B	Timer/Counter 2 Output Compare Register B							
\$B3	OCR2A	Timer/Counter 2 Output Compare Register A							
\$B2	TCNT2	Timer/Counter 2 Counter Register							
\$B1	TCCR2B	FOC2A	FOC2B	-	-	WGM22	CS2		
\$BO	TCCR2A	COM2A		COM2B		-	-	WGM21	WGM20

\$62	VDTCR	VDTCE	SWRSTN	-	-	-	VDTSEL		VDTEN
		CLKPCE	CLKOEN	CLKoen	-	CLKPS			
			0	1					
\$60	WDTCSR	WDIF	WDIE	WDP3	WDCE	WDE	WDP2	WDP1	WDPO
\$5F(\$3F)	SREG	1	T	H	S	V	N	z	C
\$5E(\$3E)	SPH	Stack point high byte							
\$5D(\$3D)	SPL	Stack point low byte							
\$55(\$35)	MCUCR	-	BODS	BODSE	PUD	-	-	IVSEL	IVCE
\$54(\$34)	MCUSR	SWDD	-	-	OCDRF	WDRF	BORF	EXTRF	PORF
\$53(\$33)	SMCR	-	-	-	-	SM			SE
\$50(\$30)	ACSR	ACD	ACBG	ACO	ACI	ACIE	ACIC	ACIS	
\$4E(0x2E)	SPDR	SPI Data Register							
\$4D(\$2D)	SPSR	SPIF	WCOL	-	-	-	DUAL	-	SPI2X
\$4C(\$2C)	SPCR	SPIE	SPE	DORD	MSTR	CPOL	CPHA	SPR	
\$4B(\$2B)	GPIOR2	General purpose I/O register 2							
\$4A(\$2A)	GPIOR1	General purpose I/O register 1							
\$48(\$28)	OCROB	Timer/counter 0 output compare register B							
\$47(\$27)	OCROA	Timer/counter 0 output compare register A							
\$46(\$26)	TCNTO	Timer/Counter 0 counter							
\$45(\$25)	TCCROB	FOCOA	FOCOB	OCOAS	-	WGM02	CSO		
\$44(\$24)	TCCROA	COMOA		СОМОВ		-	-	WGM01	WGM00
\$43(\$23)	GTCCR	TSM	-	-	-	-	-	PSRASY	PSRSYNC
\$42(\$22)	EEARH	EEPROM Address high byte							
\$41(\$21)	EEARL	EEPROM Address low byte							
\$40(\$20)	EEDR	EEPROM Data							
\$3F(\$1F)	EECR	EEPM2	-	EEPM1	EEPMO	EERIE	EEMWE	EEWE	EERE
\$3E(\$1E)	GPIORO	General purpose IO register 0							
\$3D(\$1D)	EIMSK	-	-	-	-	-	-	INT1	INTO
\$3C(\$1C)	EIFR	-	-	-	-	-	-	INTF1	INTFO
\$3B(\$1B)	PCIFR	-	-	-	-	-	PCIF2	PCIF1	PCIFO
\$37(\$17)	TIFR2	-	-	-	-	-	OCF2B	OCF2A	TOV2
\$36(\$16)	TIFR1	-	-	ICF1	-	-	OCF1B	OCF1A	TOV1
\$35(\$15)	TIFRO	-	-	-	-	-	OCFOB	OCFOA	TOVO
\$2B(\$0B)	PORTD	Port output D							
\$2A(\$0A)	DDRD	Data direction D							
\$29(\$09)	PIND	Port input D							
\$28(\$08)	PORTC	Port output C							

$\$ 27(\$ 07)$	DDRC	Port direction C
$\$ 26(\$ 06)$	PINC	Port input C
$\$ 25(\$ 05)$	PORTB	Port output B
$\$ 24(\$ 04)$	DDRB	Port direction B
$\$ 23(\$ 03)$	PINB	Port input B

Instruction Index

Inst.	Opc.	Funcitons	Operation	FLAG	Cycle
Arithmetic and Logic operation					
ADD	$\mathrm{R}_{\mathrm{d}}, \mathrm{R}_{\mathrm{r}}$	Add two registers	$\mathrm{R}_{\mathrm{d}} \leftarrow \mathrm{R}_{\mathrm{d}}+\mathrm{R}_{\mathrm{r}}$	Z,C,N,V,H	1
ADC	$\mathrm{R}_{\mathrm{d}}, \mathrm{R}_{\mathrm{r}}$	Add with carry two regiters	$\mathrm{R}_{\mathrm{d}} \leftarrow \mathrm{R}_{\mathrm{d}}+\mathrm{R}_{\mathrm{r}}+\mathrm{C}$	Z,C,N,V,H	1
ADIW	$\mathrm{R}_{\mathrm{dl}}, \mathrm{K}$	Add immediate to word	$\mathrm{R}_{\text {dh }}: \mathrm{R}_{\mathrm{d} \mid} \leftarrow \mathrm{R}_{\text {dh }}: \mathrm{R}_{\mathrm{dl}}+\mathrm{K}$	Z,C,N,V,S	1
SUB	$\mathrm{R}_{\mathrm{d}}, \mathrm{R}_{\mathrm{r}}$	Subtract two registers	$\mathrm{R}_{\mathrm{d}} \leftarrow \mathrm{R}_{\mathrm{d}}-\mathrm{R}_{\mathrm{r}}$	Z,C,N,V,H	1
SUBI	R_{d}, K	Subtract constant from registers	$\mathrm{R}_{\mathrm{d}} \leftarrow \mathrm{R}_{\mathrm{d}}-\mathrm{K}$	Z,C,N,V,H	1
SBC	$\mathrm{R}_{\mathrm{d}}, \mathrm{R}_{\mathrm{r}}$	Subtract with carry	$R_{d} \leftarrow R_{d}-R_{r}-C$	Z,C,N,V,H	1
SBCI	$\mathrm{R}_{\mathrm{d}}, \mathrm{K}$	Subtract with carry constant	$\mathrm{R}_{\mathrm{d}} \leqslant \mathrm{R}_{\mathrm{d}}-\mathrm{K}-\mathrm{C}$	Z,C,N,V,H	1
SBIW	$\mathrm{R}_{\mathrm{d} 1}$, K	Subtract immediate from word	$\mathrm{R}_{\mathrm{dh}}: \mathrm{R}_{\mathrm{dl}} \leqslant \mathrm{R}_{\text {dh }}: \mathrm{R}_{\mathrm{dl}}-\mathrm{K}$	Z,C,N,V,S	1
AND	$\mathrm{R}_{\mathrm{d}}, \mathrm{R}_{\mathrm{r}}$	Logical AND	$R_{d} \leftarrow R_{d} \& R_{r}$	Z,N,V	1
ANDI	$\mathrm{R}_{\mathrm{d}}, \mathrm{K}$	Logical AND register and constant	$\mathrm{R}_{\mathrm{d}} \leftarrow \mathrm{R}_{\mathrm{d}} \& K$	Z,N,V	1
OR	$\mathrm{R}_{\mathrm{d}}, \mathrm{R}_{\mathrm{r}}$	Logical OR	$\mathrm{R}_{\mathrm{d}} \leftarrow \mathrm{R}_{\mathrm{d}} \mid \mathrm{R}_{\mathrm{r}}$	Z,N,V	1
ORI	$\mathrm{R}_{\mathrm{d}}, \mathrm{K}$	Logical OR register and constant	$\mathrm{R}_{\mathrm{d}} \leftarrow \mathrm{R}_{\mathrm{d}} \mid \mathrm{K}$	Z,N,V	1
EOR	$\mathrm{R}_{\mathrm{d}}, \mathrm{R}_{\mathrm{r}}$	Exclusive OR	$\mathrm{R}_{\mathrm{d}} \leftarrow \mathrm{R}_{\mathrm{d}} \oplus \mathrm{R}_{\mathrm{r}}$	Z,N,V	1
COM	R_{d}	One's complement	$\mathrm{R}_{\mathrm{d}} \leftarrow$ \$FF- R_{d}	Z,C,N,V	1
NEG	R_{d}	Two's complement	$\mathrm{R}_{\mathrm{d}} \leftarrow \$ 00-\mathrm{R}_{\mathrm{d}}$	Z,C,N,V,H	1
SBR	$\mathrm{R}_{\mathrm{d}}, \mathrm{K}$	Set bit(s) in Register	$\mathrm{R}_{\mathrm{d}} \leftarrow \mathrm{R}_{\mathrm{d}} \vee \mathrm{K}$	Z,N,V	1
CBR	R_{d}, K	Clear bit(s) in Rigister	$\mathrm{R}_{\mathrm{d}} \leftarrow \mathrm{R}_{\mathrm{d}} \vee(\$ \mathrm{FF}-\mathrm{K})$	Z,N,V	1
INC	R_{d}	Increment	$\mathrm{R}_{\mathrm{d}} \leftarrow \mathrm{R}_{\mathrm{d}}+1$	Z,N,V	1
DEC	R_{d}	Decrement	$\mathrm{R}_{\mathrm{d}} \leftarrow \mathrm{R}_{\mathrm{d}}-1$	Z,N,V	1
TST	R_{d}	Test for zero or minus	$\mathrm{R}_{\mathrm{d}} \leftarrow \mathrm{R}_{\mathrm{d}} \& \mathrm{R}_{\mathrm{d}}$	Z,N,V	1
CLR	R_{d}	Clear register	$\mathrm{R}_{\mathrm{d}} \leftarrow \mathrm{R}_{\mathrm{d}} \oplus \mathrm{R}_{\mathrm{d}}$	Z,N,V	1
SER	R_{d}	Set register	$\mathrm{R}_{\mathrm{d}} \leftarrow$ \$ $\mathrm{RFF}^{\text {c }}$	None	1
MUL	$\mathrm{R}_{\mathrm{d}}, \mathrm{R}_{\mathrm{r}}$	Multiply unsigned	$R_{1}: R_{0} \leftarrow R_{d} \times R_{r}$	Z, C	1
MULS	$\mathrm{R}_{\mathrm{d}}, \mathrm{R}_{\mathrm{r}}$	Multiply signed	$R_{1}: R_{0} \leftarrow R_{d} \times R_{r}$	Z, C	1
MULSU	$\mathrm{R}_{\mathrm{d}}, \mathrm{R}_{\mathrm{r}}$	Multiply signed with unsigned	$R_{1}: R_{0} \leftarrow R_{d} \times R_{r}$	Z,C	1
FMUL	$\mathrm{R}_{\mathrm{d}}, \mathrm{R}_{\mathrm{r}}$	Fractional MUL	$R_{1}: R_{0} \leftarrow\left(R_{d} \times R_{r}\right) \ll 1$	Z, C	1
FMULS	$\mathrm{R}_{\mathrm{d}}, \mathrm{R}_{\mathrm{r}}$	Fractional MULS	$R_{1}: R_{0} \leftarrow\left(R_{d} \times R_{r}\right) \ll 1$	Z, C	1
FMULSU	$\mathrm{R}_{\mathrm{d}}, \mathrm{R}_{\mathrm{r}}$	Fractional MULSU	$R_{1}: R_{0} \leftarrow\left(R_{d} \times R_{r}\right) \ll 1$	Z,C	1
Branch Instructions					
RJMP	K	Relative jump	$\mathrm{PC} \leftarrow \mathrm{PC}+\mathrm{K}+1$	None	1
IJMP		Indirect jump to (Z)	$\mathrm{PC} \leftarrow \mathrm{Z}$	None	2
JMP	K	Direct jump	$\mathrm{PC} \leftarrow \mathrm{K}$	None	2
RCALL	K	Relative subroutine call	$\mathrm{PC} \leftarrow \mathrm{PC}+\mathrm{K}+1$	None	1
ICALL		Indirect call to (Z)	$\mathrm{PC} \leftarrow \mathrm{Z}$	None	2
CALL	K	Direct subroutine call	$\mathrm{PC} \leftarrow \mathrm{K}$	None	2
RET		Subroutine return	$\mathrm{PC} \leftarrow$ Stack	None	2
RETI		Interrupt return	$\mathrm{PC} \leftarrow$ Stack	1	2

Inst.	Opc.	Funcitons	Operation	FLAG	Cycle
Branch Instructions (Cont'd)					
CPSE	$\mathrm{R}_{\mathrm{d}}, \mathrm{R}_{\mathrm{r}}$	Compare, skip if equal	If $\left(R_{d}=R_{r}\right) \quad P C \leftarrow P C+2$ or 3	None	1/2
CP	$\mathrm{R}_{\mathrm{d}}, \mathrm{R}_{\mathrm{r}}$	Compare	$\mathrm{R}_{\mathrm{d}}-\mathrm{R}_{\mathrm{r}}$	Z,N,V,C,H	1
CPC	$\mathrm{R}_{\mathrm{d}}, \mathrm{R}_{\mathrm{r}}$	Compare with carry	$\mathrm{R}_{\mathrm{d}}-\mathrm{R}_{\mathrm{r}}-\mathrm{C}$	Z,N,V,C,H	1
CPI	R_{d}, K	Compare with immediate	$\mathrm{R}_{\mathrm{d}}-\mathrm{K}$	Z,N,V,C,H	1
SBRC	$\mathrm{R}_{\mathrm{r}}, \mathrm{b}$	Skip if bit in register cleared	$1 f\left(R_{r}(\mathrm{~b})=0\right) \quad \mathrm{PC} \leftarrow \mathrm{PC}+2$ or 3	None	1/2
SBRS	$\mathrm{R}_{\mathrm{r}}, \mathrm{b}$	Skip if bit in register set	If $\left(\mathrm{R}_{\mathrm{r}}(\mathrm{b})=1\right) \quad \mathrm{PC} \leqslant \mathrm{PC}+2$ or 3	None	1/2
SBIC	P, b	Skip if bit in I/O cleared	$\operatorname{If}(\mathrm{P}(\mathrm{b})=0) \quad \mathrm{PC} \leqslant \mathrm{PC}+2$ or 3	None	1/2
SBIS	P, b	Skip if bit in I/O set	$1 \mathrm{f}(\mathrm{P}(\mathrm{b})=1) \quad \mathrm{PC} \leftarrow \mathrm{PC}+2$ or 3	None	1/2
BRBS	s, k	Branch if status flag set	$\operatorname{If}(\operatorname{SREG}(\mathrm{S})=1) \quad \mathrm{PC} \leftarrow \mathrm{PC}+\mathrm{K}+1$	None	1/2
BRBC	s, k	Branch if status flag cleared	If(SREG(S) $=0$) $\quad P C \leftarrow P C+K+1$	None	1/2
BREQ	k	Branch if equal	if $(Z=1)$ then $P C \leftarrow P C+k+1$	None	1/2
BRNE	k	Branch if not equal	if $(Z=0)$ then $P C \leftarrow P C+k+1$	None	1/2
BRCS	k	Branch if carry set	if $(C=1)$ then $P C \leftarrow P C+k+1$	None	1/2
BRCC	k	Branch if carry cleared	if $(C=0)$ then $P C \leftarrow P C+k+1$	None	1/2
BRSH	k	Branch if same or higher	if $(C=0)$ then $P C \leftarrow P C+k+1$	None	1/2
BRLO	k	Branch if lower	if $(C=1)$ then $P C \leftarrow P C+k+1$	None	1/2
BRMI	k	Branch if minus	if $(\mathrm{N}=1)$ then $\mathrm{PC} \leftarrow \mathrm{PC}+\mathrm{k}+1$	None	1/2
BRPL	k	Branch if plus	if $(\mathrm{N}=0)$ then $\mathrm{PC} \leftarrow \mathrm{PC}+\mathrm{k}+1$	None	1/2
BRGE	k	Branch if greater or equal, signed	if $(N \oplus V=0)$ then $P C \leftarrow P C+k+1$	None	1/2
BRLT	k	Branch if less than zerio, signed	if $(N \oplus V=1)$ then $P C \leftarrow P C+k+1$	None	1/2
BRHS	k	Branch if half carry flag set	if $(\mathrm{H}=1)$ then $\mathrm{PC} \leftarrow \mathrm{PC}+\mathrm{k}+1$	None	1/2
BRHC	k	Branch if half carry flag cleared	if $(\mathrm{H}=0)$ then $\mathrm{PC} \leftarrow \mathrm{PC}+\mathrm{k}+1$	None	1/2
BRTS	k	Branch if T flag set	if $(T=1)$ then $P C \leftarrow P C+k+1$	None	1/2
BRTC	k	Branch if T flag cleared	if $(T=0)$ then $P C \leftarrow P C+k+1$	None	1/2
BRVS	k	Branch if overflow flag is set	$\mathrm{f}(\mathrm{V}=1)$ then $\mathrm{PC} \leftarrow \mathrm{PC}+\mathrm{k}+1$	None	1/2
BRVC	k	Branch if overflow flag cleared	$f(V=0)$ then $P C \leftarrow P C+k+1$	None	1/2
BRIE	k	Branch if interrupt enabled	$f(\mathrm{I}=1)$ then $\mathrm{PC} \leftarrow \mathrm{PC}+\mathrm{k}+1$	None	1/2
BRID	k	Branch if interrupt disabled	$\mathrm{f}(\mathrm{I}=0)$ then $\mathrm{PC} \leftarrow \mathrm{PC}+\mathrm{k}+1$	None	1/2
DATA TRANSFER Instructions					
MOV	Rd, Rr	Move between registers	$\mathrm{Rd} \leftarrow \mathrm{Rr}$	None	1
Movw	Rd, Rr	Copy register word	$\mathrm{Rd}+1: \mathrm{Rd} \leftarrow \mathrm{Rr}+1: \mathrm{Rr}$	None	1
LDI	Rd, K	Load immediate	$\mathrm{Rd} \leftarrow \mathrm{K}$	None	1
LD	Rd, X	Load indirect	$\mathrm{Rd} \leftarrow(\mathrm{X})$	None	1
LD	Rd, $\mathrm{X}+$	Load indirect and post-inc.	$\mathrm{Rd} \leftarrow(\mathrm{X}), \mathrm{X} \leftarrow \mathrm{X}+1$	None	1
LD	Rd, -X	Load indirect and pre-dec	$X \leftarrow X-1, R d \leftarrow(X)$	None	1
LD	Rd, Y	Load indirect	$\mathrm{Rd} \leftarrow(\mathrm{Y})$	None	1
LD	Rd, $\mathrm{Y}+$	Load indirect and post-inc	$\mathrm{Rd} \leftarrow(\mathrm{Y}), \mathrm{Y} \leftarrow \mathrm{Y}+1$	None	1
LD	Rd, $-Y$	Load indirect and pre-dec	$Y \leftarrow Y-1, R d \leftarrow(Y)$	None	1
LDD	Rd, Y+q	Load indirect with displacement	$\mathrm{Rd} \leftarrow(\mathrm{Y}+\mathrm{q})$	None	1

LD	Rd, Z	Load indirect	$\mathrm{Rd} \leftarrow(\mathrm{Z})$	None	1
LD	Rd, Z+	Load indirect and post-inc	$\mathrm{Rd} \leqslant(\mathrm{Z}), \mathrm{Z} \leftarrow \mathrm{Z}+1$	None	1
LD	Rd, -Z	Load indirect and pre-dec	$\mathrm{Z} \leftarrow \mathrm{Z}-1, \mathrm{Rd} \leftarrow(\mathrm{Z})$	None	1
LDD	Rd, Z+q	Load indirect with displacement	$\mathrm{Rd} \leftarrow(\mathrm{Z}+\mathrm{q})$	None	1
LDS	Rd, k	Load direct from SRAM	$\mathrm{Rd} \leqslant(\mathrm{k})$	None	2
ST	X, Rr	Store indirect	$(X) \leftarrow \operatorname{Rr}$	None	1
ST	$X+$ Rr	Store indirect and post-inc	$(X) \leftarrow \operatorname{Rr}, X \leftarrow X+1$	None	1
ST	-X, Rr	Store indirect and pre-dec	$X \leftarrow X-1,(X) \leftarrow R r$	None	1
ST	Y, Rr	Store indirect	$(\mathrm{Y}) \leftarrow \mathrm{Rr}$	None	1
ST	Y + , Rr	Store indirect and post-inc	$(\mathrm{Y}) \leftarrow \mathrm{Rr}, \mathrm{Y} \leftarrow \mathrm{Y}+1$	None	1
ST	-Y, Rr	Store indirect and pre-dec	$Y \leftarrow Y-1,(Y) \leftarrow R \mathrm{Rr}$	None	1
STD	Y+q, Rr	Store indirect with displacement	$(Y+q) \leftarrow R r$	None	1
ST	Z, Rr	Store indirect	$(Z) \leftarrow R r$	None	1
ST	Z + , Rr	Store indirect and post-inc	$(\mathrm{Z}) \leftarrow \mathrm{Rr}, \mathrm{Z} \leftarrow \mathrm{Z}+1$	None	1
ST	-Z, Rr	Store indirect and pre-dec	$\mathrm{Z} \leftarrow \mathrm{Z}-1,(\mathrm{Z}) \leftarrow \mathrm{Rr}$	None	1
STD	Z $+\mathrm{q}, \mathrm{Rr}$	Store indirect with displacement	$(Z+q) \leftarrow \operatorname{Rr}$	None	1
STS	k, Rr	Store direct	$(k) \leftarrow \mathrm{Rr}$	None	2
LPM		Load program memory	$\mathrm{RO} \leftarrow$ (Z)	None	2
LPM	Rd, Z	Load program memory	$\mathrm{Rd} \leftarrow(\mathrm{Z})$	None	2
LPM	Rd, Z+	Load program and post-inc	$\mathrm{Rd} \leftarrow(\mathrm{Z}), \mathrm{Z} \leftarrow \mathrm{Z}+1$	None	2
LD	Rd, Z+	Load	$\mathrm{Rd} \leftarrow(\mathrm{Z}), \mathrm{Z} \leftarrow \mathrm{Z}+1$	None	1
LD	Rd, -Z	Load indirect and pre-dec	$\mathrm{Z} \leftarrow \mathrm{Z}-1, \mathrm{Rd} \leftarrow(\mathrm{Z})$	None	1
LDD	Rd, Z+q	Load indirect with displacement	$\mathrm{Rd} \leftarrow(\mathrm{Z}+\mathrm{q})$	None	1
LDS	Rd, k	Load direct from SRAM	$\mathrm{Rd} \leqslant(\mathrm{k})$	None	2
IN	Rd, P	In port	$\mathrm{Rd} \leftarrow \mathrm{P}$	None	1
OUT	P, Rr	Out port	$\mathrm{P} \leftarrow \mathrm{Rr}$	None	1
PUSH	Rr	Push register on stack	STACK $\leftarrow \mathrm{Rr}$	None	1
POP	Rd	Pop register from stack	$\mathrm{Rd} \leftarrow$ STACK	None	1
BIT and BIT-TEST Instructions					
SBI	P, b	Set bit in I/O register	$\mathrm{I} / \mathrm{O}(\mathrm{P}, \mathrm{b}) \leftarrow 1$	None	1
CBI	P, b	Clear bit in I/O register	$\mathrm{I} / \mathrm{O}(\mathrm{P}, \mathrm{b}) \leftarrow 0$	None	1
LSL	Rd	Logical shift left	$\mathrm{Rd}(\mathrm{n}+1) \leftarrow \operatorname{Rd}(\mathrm{n}), \mathrm{Rd}(0) \leftarrow 0$	Z,C,N,V	1
LSR	Rd	Logical shift right	$\operatorname{Rd}(\mathrm{n}) \leftarrow \operatorname{Rd}(\mathrm{n}+1), \operatorname{Rd}(7) \leftarrow 0$	Z	1
ROL	Rd	Rotate left through carry	$\mathrm{Rd}(0) \leftarrow \mathrm{C}, \mathrm{Rd}(\mathrm{n}+1) \leftarrow \mathrm{Rd}(\mathrm{n}), \mathrm{C} \leftarrow \mathrm{Rd}(7)$	Z	1
ROR	Rd	Rotate right through carry	$\operatorname{Rd}(7) \leftarrow C, \operatorname{Rd}(\mathrm{n}) \leftarrow \mathrm{Rd}(\mathrm{n}+1), \mathrm{C} \leftarrow \operatorname{Rd}(0)$	Z	1
ASR	Rd	Arithmetic shift right	$R d(n) \leftarrow \operatorname{Rd}(\mathrm{n}+1), \mathrm{n}=0: 6$	Z	1
SWAP	Rd	Swap nibbles	$\operatorname{Rd}(3: 0) \leftarrow \operatorname{Rd}(7: 4), \operatorname{Rd}(7: 4) \leftarrow \operatorname{Rd}(3: 0)$	None	1
BSET	s	Flag set	SREG(s) $\leftarrow 1$	SREG(s)	1
BCLR	S	Flag clear	SREG(s) $\leftarrow 0$	SREG(s)	1
BST	Rr, b	Bit store from register to T	$\mathrm{T} \leftarrow \mathrm{Rr}(\mathrm{b})$	T	1
BLD	Rd, b	Bit load from T to register	$\operatorname{Rd}(\mathrm{b}) \leftarrow \mathrm{T}$	None	1
SEC		Set Carry	$C \leftarrow 1$	C	1

CLC	Clear carry	$C \leftarrow 0$	C	1
SEN	Set negative flag	$N \leftarrow 1$	N	1
CLN	Clar negative flag	$N \leftarrow 0$	N	1
SEZ	Set zero flag	$z \leftarrow 1$	Z	1
CLZ	Clear zero flag	$\mathrm{z} \leftarrow 0$	Z	1
SEI	Global interrupt enable	$1 \leftarrow 1$	1	1
CLI	Global interrupt disable	$1 \leftarrow 0$	1	1
SES	Set signed test flag	$\mathrm{S} \leftarrow 1$	S	1
CLS	Clear signed test flag	$\mathrm{S} \leftarrow 0$	S	1
SEV	Set 2's complement overflow	$\mathrm{V} \leftarrow 1$	V	1
CLV	Clear 2's complement overflow	$V \leftarrow 0$	v	1
SET	Set T in SREG	$T \leftarrow 1$	T	1
CLT	Clear T in SREG	$T \leftarrow 0$	T	1
MCU Control Instructions				
NOP	No operation		None	1
SLEEP	Sleep		None	1
WDR	Watchdog reset		None	1
BREAK	Software break	Only for debug purpose	None	N/A

Package Definitions

LQFP32L Dimension

Simboly	Min.	Typical.	Max.	Unit
D	8.90	9.00	9.10	mm
D1	6.90	7.00	7.10	mm
b	0.15	0.20	0.25	mm
e	0.75	0.80	0.85	mm
E	8.90	9.00	9.10	mm
E1	6.90	7.00	7.10	mm
C	-	0.10	-	mm
L	0.55	0.60	0.65	mm
A1	-	1.40	-	mm

